C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Partial Differential Equations

Subject Code: 5SC02PDE1		Branch: M.Sc. (Mathematics)	
Semester: 2	Date: 25/04/2018	Time: 10:30 To 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.

(4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the following questions	(07)
	a.	Find the characteristic of $(\sin^2 x)r + (2\cos x)s - t = 0$.	(02)
	b.	Find order of equation $(5D' - 2)(3D' + D^2)^2 z = 0$.	(01)
	c.	Classify the region in which equation	(01)
		$x(xy-1)r - (x^2y^2 - 1)s + y(xy-1)t + xp + yq = 0$ is parabolic.	
	d.	Find particular integral of $(DD' + aD + bD' + ab)z = e^{mx + ny}$.	(01)
	e.	The equation $\frac{\partial^2 u}{\partial x \partial y} + 3x \left(\frac{\partial z}{\partial x}\right)^2 - xy \left(\frac{\partial z}{\partial x}\right) \left(\frac{\partial z}{\partial y}\right) + y^2 \left(\frac{\partial^2 z}{\partial y^2}\right) = 0$ is same as	(01)
		$s + 3xp^2 - xypq + y^2t = 0$. Determine whether the statement is True or Fals	se.
	f.	The equation $x^2r - 2xypq + y^2t = 0$ is nonlinear. Determine whether the	(01)
		statement is True or False.	
Q-2		Attempt all questions	(14)
	a.	Reduce $yr + (x + y)s + xt = 0$ to canonical form and find its solution.	(07)
	b.	Using Monge's method, solve the equation $3s - 2(rt - s^2) = 2$.	(07)
		OR	
Q-2		Attempt all questions	(14)
	a.	Using Monge's method, solve the equation $r + 4s + 3t = xy$.	(07)
	b.	Let $(\alpha D + \beta D + \gamma)^n$ be a factor of $F(D, D)$ and $\alpha \neq 0$, then prove that	(07)
		$u = e^{-\frac{\gamma x}{\alpha}} \sum_{s=1}^{n} x^{s-1} \phi_s(\beta x - \alpha y)$	
		is a solution of $F(D, D')z = 0$.	
0-3		Attempt all questions	(14)
τ-	a.	Solve: $(D - 3D')^2(D + 3D')z = e^{3x+y}$.	(05)
	b.	Solve: $(D^2 - DD' - 2D'^2 + 2D + 2D')z = \sin(2x + y)$.	(05)
	c.	Eliminate the arbitrary functions f and g from $z = f(x^2 - y) + g(x^2 + y)$.	(04)
		OR OR	· · ·
Q-3		Attempt all questions	(14)
÷	a.	Reduce $x^2r + y^2t = 0$ to canonical form.	(05)
	b.	Solve: $r + s - 2t = (2x + y)^{\frac{1}{2}}$.	(05)

c. Solve:
$$\frac{\partial^4 z}{\partial x^4} - 2 \frac{\partial^4 z}{\partial x^2 \partial y^2} + \frac{\partial^4 z}{\partial y^4} = 0.$$
 (04)

SECTION – II

Attempt the following questions Q-4

- (07)State Green's identities. (02)a. **b.** What is equipotential surface? (02)Write the Laplace equation in spherical co-ordinate system. (02)c.
- **d.** Wave equation is considered in the Dirichlet BVP. Determine whether the (01)statement is True or False.

Q-5 Attempt all questions

(14)

(14)

(14)

- a. Show that the solution of three dimensional wave equation can be put in the (07)form $e^{\pm i(lx+my+nz+kct)}$, where l, m, n, k are constants with $k^2 = l^2 + m^2 + n^2$.
- **b.** Solve the following boundary value problem in the half-plane y > 0, described (07)by
 - PDE: $u_{xx} + u_{yy} = 0$, $-\infty < x < \infty$, y > 0BCs: u(x, 0) = f(x), $-\infty < x < \infty$, *u* is bounded as $y \to \infty$, *u* and $\frac{\partial u}{\partial x}$ vanish as $|x| \to \infty$. OR

Q-5 Attempt all questions

a. Solve interior Dirichlet problem for a function $u = u(r, \theta)$ for circle and show (07)that solution is of the form $u(r,\theta) = \sum_{n=0}^{\infty} r^n (A_n \cos n\theta + B_n \sin n\theta)$, with A_n , B_n are constants.

Show that if the three dimensional Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$ is (07)b. transform to cylindrical coordinates (r, θ, z) defined by $x = r \cos \theta$, $y = r \sin \theta$, is takes the form $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0.$

Q-6 Attempt all questions

- **a.** Let D be a bounded domain in \mathbb{R}^2 , bounded by a smooth closed curve B. Let $\{u_n\}$ (05)be a sequence of functions, each of which is continuous on \overline{D} and harmonic in D. If $\{u_n\}$ converges uniformly on B, then prove that $\{u_n\}$ converges on \overline{D} to limit function which is continuous on \overline{D} and harmonic in D.
- **b.** Show that the surfaces $(x^2 + y^2)^2 2a^2(x^2 y^2) + a^4 = c$ can form an (05)equipotential family of surfaces, and find the general form of the corresponding potential function.
- c. Using the method of separation of variables, solve (04)

$$u_x + 2u_y = 0, u(0, y) = 4e^{-2y}.$$

OR

(14)

Attempt all questions Q-6

- **a.** Suppose that u(x, y) is harmonic in bounded D and continuous in $\overline{D} = D \cup B$. (05)Then prove that *u* attains its maximum on the boundary *B* of *D*.
- **b.** Solve: $x^2r y^2t + px qy = \log x$. (05)
- c. Find the Green's function for the following boundary value problem (04)y''(x) = f(x), y(0) = 0, y(1) = 0.

